Land use classification and land use change analysis using satellite images in Lombok Island, Indonesia
نویسندگان
چکیده
منابع مشابه
Land cover land use mapping and change detection analysis using geographic information system and remote sensing
Land cover/land use categories are relevant components in land management. Understanding how land cover/land use change over time is necessary to assess the consequences of humans and natural stressors on the earth’s environment and resources. The aim of the study was to map and monitor the spatial and temporal change in land cover/land use for the periods of 1977, 1991 and 2016 and to predict ...
متن کاملDetection of land use and vegetation changes in Poldokhtar Using Landsat Satellite Images
This article has no abstract.
متن کاملArtificial Neural Network: A Tool for Classification of Land Use and Land Covers Using Satellite Images
An artificial neural network is a system based on the operation of biological neural networks, in other words, is an emulation of biological neural system. Artificial Neural Networks or simply Neural Networks are powerful general purpose computing tools. They have become popular in the analysis of remotely sensed data, particularly in classification or feature extraction from image data more ac...
متن کاملLand-use Classification Using Sar-images
This paper studies the applicability of ERS-1 and JERS SAR-images to land-use classification. Different factors affecting classification accuracy like environmental conditions of study area, speckle filtering, spatial averaging, texture measures and different ways to use temporal images are discussed. Classification experiment employing three principal component images computed from median filt...
متن کاملLand-use Classification Using Temporal Sar-images
14 ERS-1 SAR images were classified using three different classification algorithms. Median filtering and principal component analysis were used in speckle reduction and feature extraction. Feature selection was performed using branch-and-bound algorithm. The best classification accuracy (55-60%) was achieved when principal component images computed from median filtered SAR images were used. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forest Science and Technology
سال: 2016
ISSN: 2158-0103,2158-0715
DOI: 10.1080/21580103.2016.1147498